Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
PLoS One ; 19(3): e0290672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483897

RESUMO

Viral and cellular particles too large to freely diffuse have two different types of mobility in the eukaryotic cell cytoplasm: directed motion mediated by motor proteins moving along cytoskeletal elements with the particle as its load, and motion in random directions mediated by motor proteins interconnecting cytoskeletal elements. The latter motion is referred to as "active diffusion." Mechanisms of directed motion have been extensively studied compared to mechanisms of active diffusion, despite the observation that active diffusion is more common for many viral and cellular particles. Our previous research showed that active diffusion of vesicular stomatitis virus (VSV) ribonucleoproteins (RNPs) in the cytoplasm consists of hopping between traps and that actin filaments and myosin II motors are components of the hop-trap mechanism. This raises the question whether similar mechanisms mediate random motion of larger particles with different physical and biological properties. Live-cell fluorescence imaging and a variational Bayesian analysis used in pattern recognition and machine learning were used to determine the molecular mechanisms of random motion of VSV inclusion bodies and cellular early endosomes. VSV inclusion bodies are membraneless cellular compartments that are the major sites of viral RNA synthesis, and early endosomes are representative of cellular membrane-bound organelles. Like VSV RNPs, inclusion bodies and early endosomes moved from one trapped state to another, but the distance between states was inconsistent with hopping between traps, indicating that the apparent state-to-state movement is mediated by trap movement. Like VSV RNPs, treatment with the actin filament depolymerizing inhibitor latrunculin A increased VSV inclusion body mobility by increasing the size of the traps. In contrast neither treatment with latrunculin A nor depolymerization of microtubules by nocodazole treatment affected the size of traps that confine early endosome mobility, indicating that intermediate filaments are likely major trap components for these cellular organelles.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Tiazolidinas , Estomatite Vesicular , Humanos , Teorema de Bayes , Endossomos/metabolismo , Corpos de Inclusão , Vesículas Transportadoras , Estomatite Vesicular/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus
2.
J Virol ; 98(3): e0185923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411948

RESUMO

Superinfection exclusion (SIE) is a phenomenon in which a preexisting infection prevents a secondary infection. SIE has been described for several flaviviruses, such as West Nile virus vs Nhumirim virus and Dengue virus vs yellow fever virus. Zika virus (ZIKV) is an emerging flavivirus posing threats to human health. The SIE between ZIKV and Japanese encephalitis virus (JEV) is investigated in this study. Our results demonstrate for the first time that JEV inhibits ZIKV infection in both mammalian and mosquito cells, whether co-infects or subsequently infects after ZIKV. The exclusion effect happens at the stage of ZIKV RNA replication. Further studies show that the expression of JEV NS2B protein is sufficient to inhibit the replication of ZIKV, and the outer membrane region of NS2B (46-103 aa) is responsible for this SIE. JEV infection and NS2B expression also inhibit the infection of the vesicular stomatitis virus. In summary, our study characterized a SIE caused by JEV NS2B. This may have potential applications in the prevention and treatment of ZIKV or other RNA viruses.IMPORTANCEThe reemerged Zika virus (ZIKV) has caused severe symptoms in humans and poses a continuous threat to public health. New vaccines or antiviral agents need to be developed to cope with possible future pandemics. In this study, we found that infection of Japanese encephalitis virus (JEV) or expression of NS2B protein well inhibited the replication of ZIKV. It is worth noting that both the P3 strain and vaccine strain SA14-14-2 of JEV exhibited significant inhibitory effects on ZIKV. Additionally, the JEV NS2B protein also had an inhibitory effect on vesicular stomatitis virus infection, suggesting that it may be a broad-spectrum antiviral factor. These findings provide a new way of thinking about the prevention and treatment of ZIKV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Superinfecção , Proteínas não Estruturais Virais , Infecção por Zika virus , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/metabolismo , Encefalite Japonesa/virologia , Estomatite Vesicular , Zika virus , Proteínas não Estruturais Virais/metabolismo
3.
Chin Med Sci J ; 39(1): 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38384000

RESUMO

Objective To explore the influence of extracellular matrix protein ABI-interactor 3-binding protein (ABI3BP) on vesicular stomatitis virus (VSV) genome replication and innate immune signaling pathway.Methods The small interfering RNA (siRNA) was transfected to knock down ABI3BP gene in human skin fibroblast BJ-5ta cells. VSV-green fluorescent protein (VSV-GFP)-infected cell model was established. The morphological changes and F-actin stress fiber formation were detected on ABI3BP knockdown cells by phalloidin immunofluorescence staining. The mRNA level of virus replication was detected by RT-qPCR in BJ-5ta cells after VSV-GFP infection; western blotting was performed to detect the changes in interferon regulatory factor 3 (IRF3) and TANK-binding kinase 1 (TBK1) phosphorylation levels.Results The VSV-GFP-infected BJ-5ta cell model was successfully established. Efficient knockdown of ABI3BP in BJ-5ta cells was achieved. Phalloidin immunofluorescence staining revealed structural rearrangement of intracellular F-actin after ABI3BP gene knockdown. Compared with the control group, the gene copy number of VSV-GFP in ABI3BP knockdown cells increased by 2.2 - 3.5 times (P<0.01) and 2.2 - 4.0 times (P<0.01) respectively when infected with VSV of multiplicity of infection 0.1 and 1. The expression of viral protein significantly increased in ABI3BP knockdown cells after virus infection. The activation of type-I interferon pathway, as determined by phosphorylated IRF3 and phosphorylated TBK1, was significantly decreased in ABI3BP knockdown cells after VSV-GFP infection.Conclusions Extracellular matrix protein ABI3BP plays an important role in maintaining the formation and rearrangement of actin structure. ABI3BP gene deletion promotes RNA virus replication, and ABI3BP is an important molecule that maintains the integrity of type I interferon pathway.


Assuntos
Estomatite Vesicular , Animais , Humanos , Estomatite Vesicular/metabolismo , Actinas/genética , Actinas/metabolismo , Faloidina/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Antivirais , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Transporte
4.
Appl Microbiol Biotechnol ; 108(1): 240, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413399

RESUMO

Cell culture-based production of vector-based vaccines and virotherapeutics is of increasing interest. The vectors used not only retain their ability to infect cells but also induce robust immune responses. Using two recombinant vesicular stomatitis virus (rVSV)-based constructs, we performed a proof-of-concept study regarding an integrated closed single-use perfusion system that allows continuous virus harvesting and clarification. Using suspension BHK-21 cells and a fusogenic oncolytic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV), a modified alternating tangential flow device (mATF) or tangential flow depth filtration (TFDF) systems were used for cell retention. As the hollow fibers of the former are characterized by a large internal lumen (0.75 mm; pore size 0.65 µm), membrane blocking by the multi-nucleated syncytia formed during infection could be prevented. However, virus particles were completely retained. In contrast, the TFDF filter unit (lumen 3.15 mm, pore size 2-5 µm) allowed not only to achieve high viable cell concentrations (VCC, 16.4-20.6×106 cells/mL) but also continuous vector harvesting and clarification. Compared to an optimized batch process, 11-fold higher infectious virus titers were obtained in the clarified permeate (maximum 7.5×109 TCID50/mL). Using HEK293-SF cells and a rVSV vector expressing a green fluorescent protein, perfusion cultivations resulted in a maximum VCC of 11.3×106 cells/mL and infectious virus titers up to 7.1×1010 TCID50/mL in the permeate. Not only continuous harvesting but also clarification was possible. Although the cell-specific virus yield decreased relative to a batch process established as a control, an increased space-time yield was obtained. KEY POINTS: • Viral vector production using a TFDF perfusion system resulted in a 460% increase in space-time yield • Use of a TFDF system allowed continuous virus harvesting and clarification • TFDF perfusion system has great potential towards the establishment of an intensified vector production.


Assuntos
Estomatite Vesicular , Humanos , Animais , Células HEK293 , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus/genética , Técnicas de Cultura de Células/métodos , Vetores Genéticos
5.
Parasit Vectors ; 17(1): 93, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414030

RESUMO

BACKGROUND: Vesicular stomatitis virus (VSV), a vector-borne pathogen of livestock, emerges periodically in the western US. In New Mexico (NM), US, most cases occur close to the Rio Grande River, implicating black flies (Simulium spp.) as a possible vector. In 2020, VS cases were reported in NM from April to May, although total black fly abundance remained high until September. We investigated the hypothesis that transience of local VSV transmission results from transient abundance of key, competent black fly species. Additionally, we investigated whether irrigation canals in southern NM support a different community of black flies than the main river. Lastly, to gain insight into the source of local black flies, in 2023 we collected black fly larvae prior to the release of water into the Rio Grande River channel. METHODS: We randomly sub-sampled adult black flies collected along the Rio Grande during and after the 2020 VSV outbreak. We also collected black fly adults along the river in 2021 and 2022 and at southern NM farms and irrigation canals in 2022. Black fly larvae were collected from dams in the area in 2023. All collections were counted, and individual specimens were subjected to molecular barcoding for species identification. RESULTS: DNA barcoding of adult black flies detected four species in 2020: Simulium meridionale (N = 158), S. mediovittatum (N = 83), S. robynae (N = 26) and S. griseum/notatum (N = 1). Simulium robynae was only detected during the VSV outbreak period, S. meridionale showed higher relative abundance, but lower absolute abundance, during the outbreak than post-outbreak period, and S. mediovittatum was rare during the outbreak period but predominated later in the summer. In 2022, relative abundance of black fly species did not differ significantly between the Rio Grande sites and farm and irrigation canals. Intriguingly, 63 larval black flies comprised 56% Simulium vittatum, 43% S. argus and 1% S. encisoi species that were either extremely rare or not detected in previous adult collections. CONCLUSIONS: Our results suggest that S. robynae and S. meridionale could be shaping patterns of VSV transmission in southern NM. Thus, field studies of the source of these species as well as vector competence studies are warranted.


Assuntos
Simuliidae , Estomatite Vesicular , Animais , Estomatite Vesicular/epidemiologia , New Mexico/epidemiologia , Insetos Vetores , Vesiculovirus , Larva , Surtos de Doenças
6.
PLoS Comput Biol ; 20(2): e1011373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324583

RESUMO

We present the first complete stochastic model of vesicular stomatitis virus (VSV) intracellular replication. Previous models developed to capture VSV's intracellular replication have either been ODE-based or have not represented the complete replicative cycle, limiting our ability to understand the impact of the stochastic nature of early cellular infections on virion production between cells and how these dynamics change in response to mutations. Our model accurately predicts changes in mean virion production in gene-shuffled VSV variants and can capture the distribution of the number of viruses produced. This model has allowed us to enhance our understanding of intercellular variability in virion production, which appears to be influenced by the duration of the early phase of infection, and variation between variants, arising from balancing the time the genome spends in the active state, the speed of incorporating new genomes into virions, and the production of viral components. Being a stochastic model, we can also assess other effects of mutations beyond just the mean number of virions produced, including the probability of aborted infections and the standard deviation of the number of virions produced. Our model provides a biologically interpretable framework for studying the stochastic nature of VSV replication, shedding light on the mechanisms underlying variation in virion production. In the future, this model could enable the design of more complex viral phenotypes when attenuating VSV, moving beyond solely considering the mean number of virions produced.


Assuntos
Estomatite Vesicular , Animais , Estomatite Vesicular/genética , Vírus da Estomatite Vesicular Indiana/genética , Vírion/genética , Replicação Viral/genética , Mutação
7.
mBio ; 15(3): e0237323, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38334805

RESUMO

Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.


Assuntos
Aborto Espontâneo , Vacinas , Estomatite Vesicular , Humanos , Feminino , Gravidez , Animais , Camundongos , Vírus da Rubéola/metabolismo , Mutação Puntual , Glicoproteínas/genética , Proteínas do Envelope Viral/genética , Vesiculovirus/genética , Mamíferos/metabolismo
8.
Biotechnol Bioeng ; 121(2): 618-639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947118

RESUMO

The recent uptick in the approval of ex vivo cell therapies highlights the relevance of lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification-currently reliant on filtration and anion-exchange or size-exclusion chromatography-suffers from long process times and low yield of transducing particles, which translate into high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50%-60% of viral genomes; 40%-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·109 TU per mL of resin, or 5·1011 vp per mL of resin, at the residence time of 1 min) and clearance of host cell proteins (up to a 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.


Assuntos
Lentivirus , Estomatite Vesicular , Animais , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Células HEK293 , Peptídeos/metabolismo , Vesiculovirus/genética , Vetores Genéticos
9.
Biotechnol J ; 19(1): e2300041, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37766672

RESUMO

During the COVID-19 pandemic, long development timelines typically associated with vaccines were challenged. The urgent need for a vaccine provided a strong driver to reevaluate existing vaccine development approaches. Innovative approaches to regulatory approval were realized, including the use of platform-based technology. In collaboration with the International AIDS Vaccine Initiative, Inc. (IAVI), Merck & Co., Inc., Rahway, NJ, USA rapidly advanced an investigational SARS-CoV-2 vaccine based on the recombinant vesicular stomatitis virus (rVSV) platform used for the Ebola vaccine ERVEBO (rVSV∆G-ZEBOV-GP). An rVSV∆G-SARS-CoV-2 vaccine candidate was generated using the SARS-CoV-2 spike protein to replace the VSV G protein. The purification process development for this vaccine candidate was detailed in this paper. Areas were highlighted where the ERVEBO platform process was successfully adopted and where additional measures were needed for the SARS-CoV-2 vaccine candidate. These included: (i) endonuclease addition directly into the bioreactor prior to harvest, (ii) inclusion of a core-shell chromatography step for improved purification, and (iii) incorporation of a terminal, sterile filtration step to eliminate the need for aseptic, closed processing. High infectious virus titers were achieved in Phase 3 clinical drug substance (>108 PFU mL-1 ), and process consistency was demonstrated across four large scale batches that were completed in 6 months from clone selection.


Assuntos
COVID-19 , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Glicoproteína da Espícula de Coronavírus , Estomatite Vesicular , Vacinas Virais , Animais , Humanos , Vacinas contra Ebola/genética , Doença pelo Vírus Ebola/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Pandemias , COVID-19/prevenção & controle , Vesiculovirus , Vírus da Estomatite Vesicular Indiana , Vacinas Sintéticas , Anticorpos Antivirais
10.
DNA Cell Biol ; 43(2): 57-60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38079267

RESUMO

Vesicular stomatitis virus (VSV) is a promising oncolytic virus for treating solid tumors. We recently engineered a replicating VSV that specifically targets and destroys Her2/neu-expressing cancer cells. This virus was created by eliminating its natural binding site and adding a coding sequence for a single chain antibody to the Her2/neu receptor into its genome. Such an approach can be tailored to target various cellular surface molecules. This mini review will discuss genomic modifications of VSVs and their role in oncolytic therapy and discuss some challenges for moving VSVs to clinical applications.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Estomatite Vesicular , Animais , Humanos , Estomatite Vesicular/terapia , Vírus da Estomatite Vesicular Indiana/genética , Neoplasias/genética , Neoplasias/terapia , Vírus Oncolíticos/genética , Linhagem Celular Tumoral
11.
Antiviral Res ; 221: 105787, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145756

RESUMO

Varicella zoster virus (VZV) is associated with herpes zoster (HZ) or herpes zoster ophthalmicus (HZO). All antiviral agents currently licensed for the management of VZV replication via modulating different mechanisms, and the resistance is on the rise. There is a need to develop new antiviral agents with distinct mechanisms of action and adequate safety profiles. Pralatrexate (PDX) is a fourth-generation anti-folate agent with an inhibitory activity on folate (FA) metabolism and has been used as an anti-tumor drug. We observed that PDX possessed potent inhibitory activity against VZV infection. In this study, we reported the antiviral effects and the underlying mechanism of PDX against VZV infection. The results showed that PDX not only inhibited VZV replication in vitro and in mice corneal tissues but also reduced the inflammatory response and apoptosis induced by viral infection. Furthermore, PDX treatment showed a similar anti-VSV inhibitory effect in both in vitro and in vivo models. Mechanistically, PDX inhibited viral replication by interrupting the substrate supply for de novo purine and thymidine synthesis. In conclusion, this study discovered the potent antiviral activity of PDX with a novel mechanism and presented a new strategy for VZV treatment that targets a cellular metabolic mechanism essential for viral replication. The present study provided a new insight into the development of broad-spectrum antiviral agents.


Assuntos
Aminopterina/análogos & derivados , Herpes Zoster , Estomatite Vesicular , Animais , Camundongos , Herpesvirus Humano 3 , Estomatite Vesicular/tratamento farmacológico , Herpes Zoster/tratamento farmacológico , Vírus da Estomatite Vesicular Indiana , Vesiculovirus , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
12.
Front Immunol ; 14: 1279387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022659

RESUMO

Introduction: Metastatic uveal melanoma (MUM) has a poor prognosis and treatment options are limited. These patients do not typically experience durable responses to immune checkpoint inhibitors (ICIs). Oncolytic viruses (OV) represent a novel approach to immunotherapy for patients with MUM. Methods: We developed an OV with a Vesicular Stomatitis Virus (VSV) vector modified to express interferon-beta (IFN-ß) and Tyrosinase Related Protein 1 (TYRP1) (VSV-IFNß-TYRP1), and conducted a Phase 1 clinical trial with a 3 + 3 design in patients with MUM. VSV-IFNß-TYRP1 was injected into a liver metastasis, then administered on the same day as a single intravenous (IV) infusion. The primary objective was safety. Efficacy was a secondary objective. Results: 12 patients with previously treated MUM were enrolled. Median follow up was 19.1 months. 4 dose levels (DLs) were evaluated. One patient at DL4 experienced dose limiting toxicities (DLTs), including decreased platelet count (grade 3), increased aspartate aminotransferase (AST), and cytokine release syndrome (CRS). 4 patients had stable disease (SD) and 8 patients had progressive disease (PD). Interferon gamma (IFNγ) ELIspot data showed that more patients developed a T cell response to virus encoded TYRP1 at higher DLs, and a subset of patients also had a response to other melanoma antigens, including gp100, suggesting epitope spreading. 3 of the patients who responded to additional melanoma antigens were next treated with ICIs, and 2 of these patients experienced durable responses. Discussion: Our study found that VSV-IFNß -TYRP1 can be safely administered via intratumoral (IT) and IV routes in a previously treated population of patients with MUM. Although there were no clear objective radiographic responses to VSV-IFNß-TYRP1, dose-dependent immunogenicity to TYRP1 and other melanoma antigens was seen.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Estomatite Vesicular , Animais , Humanos , Interferon beta/metabolismo , Antígenos Específicos de Melanoma , Monofenol Mono-Oxigenase/metabolismo , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Linfócitos T/metabolismo , Vírus da Estomatite Vesicular Indiana
13.
Int. microbiol ; 26(4): 757-764, Nov. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-227466

RESUMO

Objective: The present study aimed to explore if bovine parvovirus (BPV) impacts beta interferon (IFN-β) production and to reveal further molecular mechanism of BPV immune escape. Method: The pCMV-Myc-BPV-VP1 recombinant plasmid was verified with both double-enzyme digestion and sequence. HEK 293 T cells were transfected with this recombinant protein and then infected with the vesicular stomatitis virus (VSV). Expression levels of IFN-β mRNA were detected using qPCR. Results: The expression level of BPV VP1 mRNA in the pCMV-Myc-BPV-VP1 group was significantly higher than those of the untreated group (UT) and pCMV-Myc vector group. BPV virus copies in bovine turbinate (BT) cells of the BPV-VP1 group were raised (P < 0.05) with an increment of 5.8 × 104. Expression levels of IFN-β mRNA of the BPV VP1 group in HEK 293 T cells were decreased (P < 0.01). Following treatment of TBK1 and IRF3(5D), IFN-β expression levels in HEK 293 T cells were depressed. Additionally, expression levels of TBK1, IRF3(5D), MDA5, and MAVS were less than those of the flag empty vector, respectively. Conclusion: pCMV-Myc-BPV-VP1 could heighten transcription levels of VP1 protein in BT cells, promote BPV proliferation, and ascend the production of IFN-β. Overexpression of pCMV-Myc-BPV-VP decreased IFN-β mRNA expression in HEK 293 T cells and inhibited IFN-β production induced by TBK1 and IRF3(5D). Furthermore, BPV VP1 obviously declined expression levels of TBK1, IRF3(5D), MDA5, and MAVS in the RIG-I-like receptor (RLR) pathway. Our findings revealed a novel mechanism evolved by BPV VP1 to inhibit type I IFN production and provided a solid scientific basis into the immunosuppression of BPV.(AU)


Assuntos
Humanos , Interferon beta , Bocavirus/imunologia , Microbiologia , Técnicas Microbiológicas , Estomatite Vesicular
14.
Viruses ; 15(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896885

RESUMO

Viruses that are transmitted by arthropods, or arboviruses, have evolved to successfully navigate both the invertebrate and vertebrate hosts, including their immune systems. Biting midges transmit several arboviruses including vesicular stomatitis virus (VSV). To study the interaction between VSV and midges, we characterized the transcriptomic responses of VSV-infected and mock-infected Culicoides sonorensis cells at 1, 8, 24, and 96 h post inoculation (HPI). The transcriptomic response of VSV-infected cells at 1 HPI was significant, but by 8 HPI there were no detectable differences between the transcriptome profiles of VSV-infected and mock-infected cells. Several genes involved in immunity were upregulated (ATG2B and TRAF4) or downregulated (SMAD6 and TOLL7) in VSV-treated cells at 1 HPI. These results indicate that VSV infection in midge cells produces an early immune response that quickly wanes, giving insight into in vivo C. sonorensis VSV tolerance that may underlie their permissiveness as vectors for this virus.


Assuntos
Arbovírus , Ceratopogonidae , Estomatite Vesicular , Animais , Transcriptoma , Ceratopogonidae/genética , Estomatite Vesicular/genética , Insetos Vetores , Vesiculovirus/genética , Arbovírus/genética , Vírus da Estomatite Vesicular Indiana/genética
15.
Nat Commun ; 14(1): 6655, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863905

RESUMO

Clinical identification and fundamental study of viruses rely on the detection of viral proteins or viral nucleic acids. Yet, amplification-based and antigen-based methods are not able to provide precise compositional information of individual virions due to small particle size and low-abundance chemical contents (e.g., ~ 5000 proteins in a vesicular stomatitis virus). Here, we report a widefield interferometric defocus-enhanced mid-infrared photothermal (WIDE-MIP) microscope for high-throughput fingerprinting of single viruses. With the identification of feature absorption peaks, WIDE-MIP reveals the contents of viral proteins and nucleic acids in single DNA vaccinia viruses and RNA vesicular stomatitis viruses. Different nucleic acid signatures of thymine and uracil residue vibrations are obtained to differentiate DNA and RNA viruses. WIDE-MIP imaging further reveals an enriched ß sheet components in DNA varicella-zoster virus proteins. Together, these advances open a new avenue for compositional analysis of viral vectors and elucidating protein function in an assembled virion.


Assuntos
Ácidos Nucleicos , Estomatite Vesicular , Animais , Microscopia , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus/genética , Proteínas Virais/genética , DNA
16.
Emerg Microbes Infect ; 12(2): e2261566, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37727107

RESUMO

ABSTRACTThe global outbreak of COVID-19 has caused a severe threat to human health; therefore, simple, high-throughput neutralization assays are desirable for developing vaccines and drugs against COVID-19. In this study, a high-titre SARS-CoV-2 pseudovirus was successfully packaged by truncating the C-terminus of the SARS-CoV-2 spike protein by 21 amino acids and infecting 293 T cells that had been stably transfected with the angiotensin-converting enzyme 2 (ACE2) receptor and furin (named AF cells), to establish a simple, high-throughput, and automated 384-well plate neutralization assay. The method was optimized for cell amount, virus inoculation, incubation time, and detection time. The automated assay showed good sensitivity, accuracy, reproducibility, Z' factor, and a good correlation with the live virus neutralization assay. The high-throughput approach would make it available for the SARS-CoV-2 neutralization test in large-scale clinical trials and seroepidemiological surveys which would aid the accelerated vaccine development and evaluation.


Assuntos
COVID-19 , Estomatite Vesicular , Animais , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Reprodutibilidade dos Testes , Pseudotipagem Viral , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Vírus da Estomatite Vesicular Indiana/genética , Testes de Neutralização/métodos
17.
Clin Microbiol Infect ; 29(12): 1587-1594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661067

RESUMO

OBJECTIVES: To report 5-year persistence and avidity of antibodies produced by the live-attenuated recombinant vesicular stomatitis virus (rVSV) expressing the Zaire Ebolavirus (ZEBOV) glycoprotein (GP), known as rVSV-ZEBOV (Ervebo®). METHODS: Healthy adults vaccinated with 300,000 or 10-50 million plaque-forming units of rVSV-ZEBOV in the WHO-coordinated trials of 2014-2015 were followed for up to 4 (Lambaréné, Gabon) and 5 (Geneva, Switzerland) years. We report seropositivity rates, geometric mean titres (GMTs), and population distribution of ZEBOV-GP ELISA IgG antibodies, neutralizing antibodies (pseudovirus and live-virus neutralization) and antibody avidity; the primary outcome was ZEBOV-GP ELISA IgG GMTs at 4 or 5 years compared with 1 year (Y1) after immunization. RESULTS: Among the 168 eligible vaccinees (Geneva: 97 and Lambaréné: 71) enrolled 1 year post-immunization, 146 (87%) remained enrolled at 4 years (Geneva: n = 88, Lambaréné: n = 58), and 84 (87%, Geneva) at 5 years post-vaccination. ZEBOV-GP ELISA IgG GMTs plateaued, with no declining trend from 1 year through the last time point assessed (1147.8 [95% CI 874.3-1507.0] at Y1 versus 1548.1 [95% CI 1136.6-2108.5] at Y5 in Geneva volunteers receiving ≥10 million plaque-forming units of rVSV-ZEBOV), their avidity matching that of ZEBOV convalescents. Live-virus neutralizing antibodies were detected for shorter periods and in fewer vaccinees (53/95 [56%] at Y1 versus 35/84 [42%] at Y5 in Geneva volunteers, all dose levels). DISCUSSION: Titres at Y1 emerged as a correlate of antibody persistence at Y5. The findings of persistent ZEBOV-GP ELISA IgG titres yet shorter-lasting, lower titres of live-virus neutralizing antibodies suggest the contribution of antibody-mediated protective mechanisms other than neutralization. Long-term clinical efficacy of rVSV-ZEBOV, however, requires further study.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Adulto , Animais , Humanos , Ebolavirus/genética , Formação de Anticorpos , República Democrática do Congo , Anticorpos Antivirais , Vacinação , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Bloqueadores
18.
Front Immunol ; 14: 1216225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731485

RESUMO

Introduction: Immune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection. Methods: Two approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine. Results: Reduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutralizing antibodies (geometric mean titer, 71.3). AGMs vaccinated at 7 or 14 days before challenge had either undetectable or low neutralizing antibody titers pre-challenge but had a rapid rise in titers after challenge that abrogated the NiV infection. A simple logistic regression model of the combined studies was used, in which the sole explanatory variable was pre-challenge neutralizing antibody titers. For a pre-challenge titer of 1:5, the predicted survival probability is 100%. The majority of animals with pre-challenge neutralizing titer of ≥1:20 were protected against pulmonary infiltrates on thoracic radiograms, and a majority of those with titers ≥1:40 were protected against clinical signs of illness and against a ≥fourfold antibody increase following challenge (indicating sterile immunity). Controls receiving rVSV-Ebola vaccine rapidly succumbed to NiV challenge, eliminating the innate immunity stimulated by the rVSV vector as a contributor to survival in monkeys challenged as early as 7 days after vaccination. Discussion and conclusion: It was concluded that PHV02 vaccine elicited a rapid onset of protection and that any detectable level of neutralizing antibody was a functional immune correlate of survival.


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola , Infecções por Henipavirus , Vírus Nipah , Estomatite Vesicular , Animais , Chlorocebus aethiops , Infecções por Henipavirus/prevenção & controle , Anticorpos Neutralizantes
19.
J Virol ; 97(8): e0024623, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37578231

RESUMO

The phospho- (P) protein, the co-factor of the RNA polymerase large (L) protein, of vesicular stomatitis virus (VSV, a prototype of nonsegmented negative-strand RNA viruses) plays pivotal roles in transcription and replication. However, the precise mechanism underlying the transcriptional transactivation by the P protein has remained elusive. Here, using an in vitro transcription system and a series of deletion mutants of the P protein, we mapped a region encompassing residues 51-104 as a transactivation domain (TAD) that is critical for terminal de novo initiation, the initial step of synthesis of the leader RNA and anti-genome/genome, with the L protein. Site-directed mutagenesis revealed that conserved amino acid residues in three discontinuous L-binding sites within the TAD are essential for the transactivation activity of the P protein or important for maintaining its full activity. Importantly, relative inhibitory effects of TAD point mutations on synthesis of the full-length leader RNA and mRNAs from the 3'-terminal leader region and internal genes, respectively, of the genome were similar to those on terminal de novo initiation. Furthermore, any of the examined TAD mutations did not alter the gradient pattern of mRNAs synthesized from internal genes, nor did they induce the production of readthrough transcripts. These results suggest that these TAD mutations impact mainly terminal de novo initiation but rarely other steps (e.g., elongation, termination, internal initiation) of single-entry stop-start transcription. Consistently, the mutations of the essential or important amino acid residues within the P TAD were lethal or deleterious to VSV replication in host cells. IMPORTANCE RNA-dependent RNA polymerase L proteins of nonsegmented negative-strand RNA viruses belonging to the Mononegavirales order require their cognate co-factor P proteins or their counterparts for genome transcription and replication. However, exact roles of these co-factor proteins in modulating functions of L proteins during transcription and replication remain unknown. In this study, we revealed that three discrete L-binding motifs within a transactivation domain of the P protein of vesicular stomatitis virus, a prototypic nonsegmented negative-strand RNA virus, are required for terminal de novo initiation mediated by the L protein, which is the first step of synthesis of the leader RNA as well as genome/anti-genome.


Assuntos
Estomatite Vesicular , Animais , Estomatite Vesicular/genética , Ativação Transcricional , RNA Viral/genética , RNA Viral/metabolismo , Vesiculovirus/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo , RNA Mensageiro/genética , Aminoácidos/genética , Transcrição Gênica , Replicação Viral/genética
20.
J Infect Dis ; 228(Suppl 7): S712-S720, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290053

RESUMO

BACKGROUND: The filovirus Bundibugyo virus (BDBV) causes severe disease with a mortality rate of approximately 20%-51%. The only licensed filovirus vaccine in the United States, Ervebo, consists of a recombinant vesicular stomatitis virus (rVSV) vector that expresses Ebola virus (EBOV) glycoprotein (GP). Ervebo was shown to rapidly protect against fatal Ebola disease in clinical trials; however, the vaccine is only indicated against EBOV. Recent outbreaks of other filoviruses underscore the need for additional vaccine candidates, particularly for BDBV infections. METHODS: To examine whether the rVSV vaccine candidate rVSVΔG/BDBV-GP could provide therapeutic protection against BDBV, we inoculated seven cynomolgus macaques with 1000 plaque-forming units of BDBV, administering rVSVΔG/BDBV-GP vaccine to 6 of them 20-23 minutes after infection. RESULTS: Five of the treated animals survived infection (83%) compared to an expected natural survival rate of 21% in this macaque model. All treated animals showed an early circulating immune response, while the untreated animal did not. Surviving animals showed evidence of both GP-specific IgM and IgG production, while animals that succumbed did not produce significant IgG. CONCLUSIONS: This small, proof-of-concept study demonstrated early treatment with rVSVΔG/BDBV-GP provides a survival benefit in this nonhuman primate model of BDBV infection, perhaps through earlier initiation of adaptive immunity.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Vacinas Virais , Animais , Estomatite Vesicular/prevenção & controle , Anticorpos Antivirais , Vesiculovirus/genética , Glicoproteínas/genética , Macaca fascicularis , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...